
Simulation and Modeling of a Novel Medium Access
Control Scheme for Multi-Beam Directional Networking

Brian Proulx, Greg Kuperman, Nathaniel M. Jones, Thomas Goff
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

{brian.proulx, gkuperman, njones, thomas.goff}@ll.mit.edu

Abstract—In this paper, we analyze a new medium access control
(MAC) protocol for multi-beam directional network via high-
fidelity simulation using a real-time emulator. Multi-beam
directional systems are a novel approach to networking that
leverage recent advancements in physical layer technology that
allows for the formation of multiple simultaneous beams in both
transmit and receive. These multiple beams allows for the re-
moval of burdensome coordination between the transmitter and
receiver and allows for an uncoordinated, distributed random
access scheme that offers high throughput. Besides theoretical
work, this paper is the first to characterize the performance of
such systems using real-time simulation tools. Aside from the
random access scheme, several novel MAC features are added
that allow for robust communication, such as location tracking
and tracking neighbor’s transmit or receive state.

For this paper, we implement this protocol in both simula-
tion and a new Extendable Mobile Ad-hoc Network Emula-
tor (EMANE) model that allows for real-time, high fidelity
performance evaluation. Using EMANE allows us to better
understand the performance of the newly developed protocols
by running real-time applications through the network. We
show that our EMANE model and simulator coincide with the
theoretical network capacity, which allows for numerical char-
acterization of scenarios in which theoretical results have not
been derived. Furthermore, through our work, we performance
test the EMANE model and quantify the maximum number of
nodes that we can operate in real-time. Through this testing,
two bottlenecks are identified: 1) infrastructure issues, where
the amount of data passed between the servers is too high, and
2) computation issues, where calculating the interference on the
packets becomes too time consuming.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. MAC PROTOCOL . 2
3. DISCRETE EVENT SIMULATOR . 4
4. EMANE MODEL . 4
5. RESULTS . 6
6. CONCLUSION . 8
REFERENCES . 8

1. INTRODUCTION
Moving from omnidirectional to directional systems offers a
host of advantages, such as increased communication range
and higher data rates [1]. Traditionally, directional signals
are generated by mechanically steering an antenna. However,

This work is sponsored by the Assistant Secretary of Defense Research
and Engineering via Air Force contract #FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the author and
are not necessarily endorsed by the United States Government.
978-1-5090-1613-6/17/31.00 c�2017 IEEE

a new technology, the digital phased array (also called a
fully digital antenna array) allows for significant flexibility
in directional communications [2]. A phased array is an
array of antenna elements, each with an analog to digital
converter behind it. When receiving, the received signal is
fully digitized, which allows receive beams to be generated
a posteriori by processing the received energy. Essentially,
the ability to post-process allows all directions to be searched
simultaneously and the direction with the best signal to noise
ratio (SNR) to be selected. Another key advancement from
this underlying technology is the ability to form multiple
simultaneous receive or transmit beams. The capability to
adaptively form transmit and receive beams can greatly en-
hance communication systems and has already been applied
to radar systems [3]. In particular, the ability to post-process
to receive many signals at the same time greatly reduces
the complexity at the medium access control (MAC) layer,
and the network throughput can be substantially higher by
transmitting concurrent, independent streams.

This work centers on exploiting this new capability to create
a new distributed, low complexity, random access MAC
protocol for multi-beam directional networks. Many previ-
ous works have addressed MAC layer design for directional
networks, but did not consider phased arrays to a posteriori
form receive beams [4]. This leads to complex MAC schemes
designed to schedule transmissions between nodes, so that
the receive beam would be pointed at the transmitter in order
to receive the packet [4]. These schemes result in reduced
network throughput and a loss of spatial reuse. Also, many
protocols required request to send (RTS) and clear to send
(CTS) handshaking to create a directional network allocation
vector (DNAV) for virtual channel sensing [5] [6]. Clearly,
random access schemes are not practical if tight transmitter-
receiver coordination is necessary for packet reception.

The airborne domain is the focus of this paper, and note that
both military and civilian networks benefit from the decreased
probability of detection and robust anti-jamming capabilities
of directional networks. In this scenario, there can be very
long distance links between nodes. Thus, propagation delay
is usually far longer than the time needed to transmit a packet.
Therefore, the previous schemes requiring either virtual or ac-
tual channel sensing are impractical, as most of the time spent
would be used to reserve a channel [7]. However, this same
issue can arise in traditional high rate communication systems
as well. For example, at 10 Gbps, a 1 Kb packet is transmitted
in 100 ns, which is equivalent to a propagation delay of 30
meters. Additionally, this domain also serves to differentiate
the underlying physical layer from massive MIMO (multiple
input, multiple output), because in this case there is very little
scattering, but on the ground in massive MIMO, there is a rich
scattering environment. Massive MIMO centers around using
a highly capable base station to transmit multiple streams to a
set of receivers. Channel state information is fed to the trans-

1

mitter in order to form beams to each receiver [8]. In contrast,
the airborne domain does not require accurate channel state
information, though it would only improve performance, as
the angle of transmission is the line of sight path, which can
be calculated from location information. Additionally, in our
MAC protocol, it is assumed that all nodes will have antenna
arrays and communicate amongst themselves, rather than
single antenna systems communicating only with a single
base station equipped with a digital phased array.

The new MAC protocol presented in this paper introduces
many features in order to leverage the advancements of the
underlying physical layer technology. Instead of relying upon
a time slotted system, an unsynchronized, random access
scheme is implemented. At a glance, each node proba-
bilistically transitions between periods of transmission and
reception, independent of all other nodes; further details of
this scheme can be found in [9]. With the random access
scheme, each node is able to track the transmit or receive state
of its neighbors to ensure that its transmission is successful,
greatly reducing the number of failed transmissions (and
interference) in the network. Another MAC feature is a
simple neighbor discovery protocol to create new links in the
network. Node location tracking, as precise node positions
are necessary for pointing a transmit beam in the correct
direction as well as selecting the correct transmit power, is
a key MAC capability. Power control is also needed to
transmit multiple beams simultaneously, as the antenna array
is constrained in its total power. In order to reduce interfer-
ence, the entire bandwidth is divided into disjoint channels,
and a method for choosing a channel for communication is
developed. Combined with channel selection, checking to
ensure that a node does not interfere with itself is another
feature: when transmitting multiple beams, if two receivers
are not separated enough in angle, then the two transmissions
would collide with each other.

In order to properly test this new protocol, we developed
a custom discrete event simulator in C++, and a new Ex-
tendable Mobile Ad-hoc Network Emulator (EMANE) [10]
model. These tools are used to both quantify the network
throughput as well as implement new approaches to improve
the system. The discrete event simulator is a custom C++ pro-
gram that uses the MAC features and physical layer signal-
in-space model from the EMANE model, but does not run
at real time, and cannot carry real traffic. The simulator is
useful for further understanding the underlying behavior of
the system, as large amounts of varying data can be extracted.
Also, developing new features is significantly easier than for
EMANE, and this allows for fast prototyping. The simulator
is completely centralized, and for small number of nodes runs
significantly faster than real time. As the number of nodes
increases, the run time of the simulator transitions to slower
than real time.

System emulation was performed by developing a new
EMANE model. The EMANE model is a close representation
of the actual system as real traffic is sent and received,
and the MAC features run at real time. At the physical
(PHY) layer, interference is calculated on each packet at a
high fidelity, which is necessary for emulating directional
networks. However, this high fidelity interference calculation
is computationally expensive and limits the total number of
nodes that can be emulated at once. In addition to the
EMANE model, we further extended the capabilities of the
Common Open Research Emulator (CORE) [11], allowing
for robust distributed emulation in a portable fashion. Python
scripts that interface with CORE allow for quick set up of

repeated tests and easy data collection. With the EMANE
model and distributed emulation, the performance of the
model could be analyzed. Specifically the most challenging
case, backlogged all-to-all traffic, was tested. In this case,
the maximum number of nodes possible was determined to
be 11, due to both infrastructure issues, the amount of data
sent between the servers, and computational issues, the time
needed to compute the interference on each packet.

In summary, we designed a new MAC protocol to exploit
the new underlying physical layer capabilities. This new
protocol utilizes random access and is designed with robust
location tracking and neighbor time slot tracking in order
to dramatically reduce dropped packets and interference.
We implemented this protocol in our simulator as well as
our EMANE model, and determined the major fundamental
bottlenecks that restrict the EMANE model to a maximum of
11 nodes. We used these tools to show that the theoretical,
simulation, and emulation results coincide, which allows our
new tools to numerically characterize scenarios for which
there are no theoretical results, namely all to all traffic.

The paper is organized as follows: first the MAC layer is
developed. Next, the simulator is covered, and then the
EMANE model and distributed emulation capabilities are
presented. Next, the limitations of the EMANE model
are discussed and quantified. Following that, sum network
throughput results are shown, and finally, we summarize the
contributions of this paper.

2. MAC PROTOCOL
Expand upon previous MAC scheme, tie into neighbor state
tracking Add subsections for each feature

In order to fully utilize the new capabilities in a multi-beam
directional system, we developed a new MAC protocol. We
examine this in detail by outlining its features, beginning with
the basic random access scheme we previously developed [9].
Next, new features that were designed and implemented as
presented, namely time slot tracking of neighbors, neighbor
discovery, location tracking, power control, channel selec-
tion, and a self-interference check. These features high-
light the new challenges of a multi-beam directional system,
namely a carefully constructed access scheme to allow for
maximum spatial reuse when transmitting to multiple neigh-
bors simultaneously and the importance of location informa-
tion (for pointing beams in the correct direction).

Access Scheme
We begin with a brief description of our access scheme
from [9]. In this protocol, time is slotted, but the time slots
across nodes are not synchronized. Thus all nodes use a
fixed time slot for transmission or reception, but the starts
of these slots are not aligned in time. Each time slot is
designated either a transmit or receive time slot, as transmit-
while-receive is not possible in this system. There is a
single integer system parameter, denoted x, which is used to
transition between transmit and receive time slots. The time
slots are assigned to either transmit or receive as follows: a
node will have x receive time slots consecutively. After those
slots, there is a single transmit slot, and the slot after that
is chosen probabilistically. With probability 1

x

, the process
begins again (starting with x receive time slots), but with
probability x�1

x

, this next slot is a transmit slot; after this
next transmit slot, the same random process is performed,

2

!" #" !"

!" #"

$%&'()*+,

-*./0,

Figure 1. Time slot tracking example

continuing until the realization is x receive slots. In short,
the time slot realizations are x receive slots followed by one
transmit slot, followed by between zero and 1 additional
transmit slots, which then transition back to the beginning of
the process with x receive slots. For all results in this paper,
x = 5, which results in five receive slots followed by a few
transmit slots, as a typical realization.

Time Slot Tracking
Note that under this access scheme, learning the realizations
of neighbor’s time slots (either transmit or receive) will allow
a node to refrain from transmitting a packet to a neighbor if
that neighbor is currently transmitting. This drastically re-
duces the number of dropped packets in the system. because
if a node transmits to a neighbor that is in the transmit state,
then the packet will not be received. Additionally, refraining
from wasting transmissions results in less interference for
other concurrent packets. Thus, each node tracks the state
of its neighbors time slots to ensure that the neighbor will
be in a receive state for the duration of the packet. To
allow this ability, each node uses a pseudo-random number
generator to determine its time slot state. The seed of this
generator determines the resulting state. In our system, a
node attaches its random seed and the number of times this
generator has been used to the header of the packet for each
transmission. A receiver can then determine the start of this
time slot (by subtracting out the propagation time), and from
this information, calculate the entire future of the node’s time
slot states. Thus, a node will only transmit to a neighbor if
that neighbor is in a receive state, otherwise a packet is not
sent. This reduces the amount of dropped packets, the amount
of interference, and saves aperture power for transmissions
that will be successful to other neighbors. See Figure 1 for an
example. In this example, the local node will not transmit a
packet to the neighbor because the neighbor is in a transmit
slot for the first part of the packet. The angle of the dashed
lines indicates the propagation delay of the packet from the
local node to the neighbor node.

Neighbor Discovery
An important feature of the MAC protocol is neighbor dis-
covery. As a directional system cannot broadcast in all
directions simultaneously, the only alternative is to sweep
over the full 4⇡ steradian space to discover other nodes. The
fundamental challenges of this problem are outlined in [12].
In the EMANE model, this search is currently limited to a 2⇡
search in the azimuth direction only. Each node subdivides
the space by the beam width, and transmits a packet in each
direction, until the full 2⇡ space is covered. This packet
contains the node’s location as well as the period in time when
it will be finished sending neighbor discovery packets. When
a neighbor receives one of these packets, it waits until the
end of the transmit time and then responds with its own hello
packet, containing its own location, as well as that of all of

!

"

#$%&'(

(

#$%&'!

#$%&'"

#$%&')

#$%&'*

(a) Step 1

!

"

#

(b) Step 2

Figure 2. Neighbor discovery process

this neighbor’s neighbors. For an example, see Figure 2. In
this figure, node 1 sends out five packets sequentially, and
after these transmissions, nodes 2 and 3 respond with their
own hello packet.

Location Tracking
Another important feature is location tracking. Due to node
mobility, it is vital that each node tracks the locations of
its neighbors. Otherwise the transmit beam may not be
pointed correctly, and the neighbors will no longer be able
to communicate. Nodes exchange location information pe-
riodically, including their velocity, to ensure that beams are
pointed in the correct direction. Additionally, each node
stores all locations of its neighbors, and before transmitting
a packet, the node will use dead reckoning to extrapolate
the neighbor’s position from the last received location and
velocity information in order to determine the direction to
point the transmit beam. Also, as a node knows the last
position and velocity it sent to its neighbor, it can create
that neighbor’s dead reckoning estimate of its own position.
Based on its current position and velocity, the node can use
this to check if it will still be within the neighbor’s transmit
beam. If the node has deviated too much from its previous
location and velocity, it will update its neighbor. Specifically,
if the node is beyond 1

4 beam width away from its dead-
reckoned position, it will update the neighbor with its new
position and velocity. For example, in Figure 3, the dead
reckoning position of node 1 is shown as node 1a, and its
actual position is node 1b. As its actual position is more than
1
4 beam width outside of node 2’s dead reckoning of node 1,
represented by the shaded area, node 1 will send a position
update to node 2. Though this figure is two-dimensional, this
process occurs with respect to both the azimuth and elevation
angles of the transmit beam.

For three dimensional location tracking, the dot product of

3

Figure 3. Location tracking example

the two vectors (one vector being from the neighbor to the
extrapolated position, the other being from the neighbor to the
actual position) is used to calculate the difference in the two
angles. If this dot product is larger than a quarter beam width
minus the guard band, then an update is required. Note that
this requires the beam width to be equal to the beam height, in
order for the beam to be a circular cone in three dimensions.
This guard band, measured in degrees, ensures that this check
is performed with enough time to transmit a packet to the
neighbor. If the check was precisely one quarter beam, then
the resulting transmission may not reach the neighbor in time.
Additionally, using one quarter beam width ensures that the
deviations of both neighbors’ positions are considered.

Power Control
Power control is a key feature in the MAC layer. Each node
knows its neighbor’s location and the minimum signal to
interference plus noise ratio (SINR) needed for the packet
to be correctly decoded at the receiver. Thus, calculating
the pathloss of a packet allows for the transmit power to
be scaled appropriately. As each aperture has a maximum
power, correctly scaling the transmit power allows for more
simultaneous beams, as well as decreases the amount of
interference on surrounding transmissions. Additionally, a
multiplicative guard factor (greater than one) is used to scale
the transmit power to make each transmission more robust to
interference as well as slight errors in beam pointing (which
result in decreased gain).

As nodes are mobile, there is a multiplicative factor when
selecting transmit power, which accounts for the fact that
while the node will still be in the transmit beam in terms
of angles, it may be farther away than the dead reckoning
estimate. If the power is selected as the minimum necessary
to close the link, any deviation in the distance will result in a
dropped packet. In order to select this multiplicative factor,
consider an example from our EMANE model. In EMANE,
the pathloss in dB (using the freespace propagation model) is

20 log10

✓
F

frequency (Hz)
10

6

distance (meters)
1000

◆
, (1)

where F = 41.916. We set the maximum allowed error in
distance to 300 meters, which results in a maximum propa-
gation delay error of approximately one microsecond. Using
a center frequency of 22 GHz, if the nodes are 5 km apart,
the difference in received power is about 0.5 dB, and at 50
km of separation, the difference is 0.1 dB. In order to counter
act this loss, the multiplicative power guard factor is set to
1.34, meaning the transmit power (in mW) is scaled up by this

amount. This scaling results in a 6.5 dB received power, if the
location information is accurate and there is no interference.
As the EMANE model assumes that the minimum power to
correctly decode a packet is 5.24 dB, this results in 1.26 dB
of clearance for location errors.

Channel Selection and Self-Interference Check
Channel selection and checking for self-interference are both
used to ensure that two simultaneous transmissions from
a node will not cause enough interference that the other
transmission would not be received. In each time slot, the
list of a node’s neighbors is randomly ordered, and this list is
used to schedule transmissions. For each neighbor, a random
channel is selected, and then all of the other previously
schedule transmissions on this channel are examined to see if
this potential transmission would interfere in the main beam.
If the potential transmission does interfere, a new channel is
selected and checked. If this potential transmission is unable
to be sent on any channel, it is dropped.

3. DISCRETE EVENT SIMULATOR
An important tool in developing and analyzing this system is
the discrete event simulator. Rather than real-time emulation
like EMANE, the discrete event simulator is a completely
centralized piece of software that computes the link utiliza-
tion for all nodes over a time period. When the number of
nodes is low, the simulator runs much faster than real time,
but when the number of nodes is high, the simulator can
take significantly longer than real time. The primary purpose
of this tool is to allow for a simple, flexible simulator that
allows for easy implementations of new features as well as the
ability to extract more data than is possible with the EMANE
model. Rather than actually transmit packets, the simulator
calculates the final SINR of packets, and reports the overall
link utilization.

The simulator is a custom C++ program, written from scratch.
It uses the same interference and power calculations as
EMANE to maintain compatible results. Additionally, the
key MAC features, such as power control, channel selection,
and the self-interference check are implemented to model the
real system. The flexibility of this tool allows for interesting
results, such as the effect of the minimum SINR to correctly
receive a packet on the overall network throughput. This
ability to gain rapid insight into MAC issues without the
heavy cost of developing and testing new EMANE features
fills a capability gap in the development of the overall system.

4. EMANE MODEL
In this work, a new EMANE model was developed that
includes both the MAC and PHY layers of the design. This
MAC layer includes implementations of the features de-
scribed in Section 2. Along with the MAC layer, a PHY layer
was implemented in EMANE, which performs the receive
beam pointing, determines the transmit and receive gains, and
calculates the interference.

PHY Model
In order to fully implement this system, a model of the
PHY layer was written in EMANE. In a real system, the
PHY layer would be responsible for many things, such as
modulation, coding, and interleaving, but as EMANE is a
packet-level simulator, the EMANE PHY layer is responsible

4

for modeling the signal in space. That is, the EMANE PHY
layer calculates the transmit and receive beam gains, the
propagation delay, the path loss, and importantly: the receive
beam pointing and interference modeling, i.e., determining
the final SINR of each packet.

In this model, it is assumed that the system is able to process
all receive directions simultaneously by utilizing large-scale
parallel processing. This is implemented in the model by
having the receiver point a receive beam precisely in the
direction of the transmitter. This represents the ability to
choose the direction that results in the maximum SNR from
all possibilities. However, a real system may have small
errors in pointing a receive beam, but this is not modeled here.

The interference model for the EMANE PHY layer, also
known as the signal in space model, is very detailed com-
pared to traditional EMANE models. As there are multiple
simultaneous transmissions occurring on different channels
in different directions, a thorough accounting for interference
is needed.

An an example, focus on a single packet being received at
a node. This packet has a receive beam associated with
it, which is pointed directly at the transmitter. All other
packets on the same channel are considered interference,
and all packets on other channels do not interfere with this
packet. For each packet on the same channel, the transmit
gain is calculated, based on the direction of transmission
relative to this node. Next, the receive gain is calculated
using the receive beam pattern for this packet. Then the
interference from this other packet is calculated on the packet
of interest, and scaled linearly by the amount of time the two
packets overlap at the receiver. Thus, each receiver calculates
the interference for each packet by considering every other
packet in the network. After calculating the final SINR of
a packet, if the SINR is above a threshold (5.24 dB in this
model), it is passed up to the MAC layer as a correctly
decoded packet. This final step could be easily extended to
a packet-correct curve (PCR), which translates the SINR to a
probability of reception, in future work.

Treating all other packets as interference, and calculating
these values for every packet is very computationally de-
manding. There are a few modifications that we developed
to reduce the computational load. First, if the packet is not
destined for the node, then the node does not calculate its
SINR; it only uses that packet as interference for packets
destined for this node. Also, the SNR (with no interference)
is calculated for each packet destined for the node, and if it
is below the threshold (5.24 dB) then its interference is not
calculated, as it will be dropped regardless. More discussion
of the characterization of this computation challenge can be
found in Section 4.

Distributed Emulation
In order to emulate a larger number of nodes, the emulation
was set up to run in a distributed fashion across multiple
servers. As interference modeling is computationally expen-
sive, running only two nodes on each server greatly increases
the number of nodes possible in a test. We developed new
CORE python scripts to automate testing and data collection.

The CORE python framework allows for a programmatic
method for setting up emulation experiments. Rather than
hard code all of the underlying pieces for EMANE (such as
the over-the-air (OTA) channel, generic routing encapsulation
(GRE) tunnels between the servers, writing every XML node

file, among others), the CORE python framework constructs
these in a python script that is portable between servers and
underlying network setups. While this framework is robust
for running EMANE on a single server, significant work was
necessary for running EMANE in a distributed manner.

Performance Characterization
In order to understand the limitations of our EMANE model
and distributed environment, we performed a series of tests
to show its performance as a function of the number of
nodes. The key challenge underlying emulating large num-
bers of nodes is that the spatial reuse of a directional system,
combined with multi-beam transmission, allows for a high
theoretical network throughput, which is difficult to emulate
in real time. After some initial study, we found that two key
factors limit the number of nodes: infrastructure and compu-
tation. For the infrastructure piece, each packet transmitted
by a node must be transmitted to all other servers, which
in turn pass this packet to their nodes. However, the large
amount of data to be sent causes the network connecting the
servers to become overloaded. The computation challenge
is that calculating the interference for each packet is more
difficult with more packets being transmitted, and the number
of packets scales with the number of nodes.

It is important to note that this performance characterization
is for a very demanding scenario. We consider the all to all
traffic pattern, in which each node has a backlogged flow to
each other node in the network. The total number of flows in a
network with n nodes is n(n� 1), which scales quadratically
with n. While this traffic pattern may not model realistic
scenarios, it does represent an upper bound to the emulation
ability. Also, a minimum of two nodes per server must be
maintained, as EMANE does not function correctly with only
one node on a server; it will remain disconnected from the
network. This limitation may be fixed in later versions of
EMANE, but that functionality has not been tested yet. This
implies that each server will have two nodes, except if the
number of nodes is odd, in which case one server will have
three nodes.

For these tests, there are two testbeds. One testbed is
comprised of 19 identical servers, each with a quad core
processor, connected together on a switch with a 1 Gbps
ethernet backplane. The other testbed is 8 machines, each
with dual 14-core processors, connected via a switch with 10
Gbps ethernet.

Infrastructure— To start, we focused on the infrastructure
challenge. The physical network connecting the servers is
called the backplane, and in EMANE, each packet transmit-
ted by a node must be distributed to all of the other servers
over the backplane. The CORE python framework currently
unicasts each packet to each server, so a single EMANE
transmission becomes (m � 1) packets over the backplane,
where m is the number of servers. Thus, the backplane traffic
can be calculated as the flow rate times the number of flows
times the number of servers minus one:

rn(n� 1)(m� 1), (2)

where r is the effective link rate. As an example, consider
a 2 Mbps effective link rate, with 11 nodes distributed over
5 servers. This results in 0.88 Gbps of backplane traffic. A
graph of the backplane traffic assuming 2 Mbps effective link
rate can be seen in Figure 4(a). Note that this figure shows
that only 11 nodes are possible with a 1 Gbps ethernet back-
plane, and 22 nodes are possible with a 10 Gbps backplane.

5

If the CORE python framework is changed to use multicast
between the servers, instead of unicast, the (m � 1) term is
dropped from Equation 2, and the resulting performance is
plotted against the unicast performance in Figure 4(b). Notice
that now 22 nodes can be emulated using a 1 Gbps ethernet
backplane.

In order to test the infrastructure performance, two metrics
were considered. The first is the number of missing packets.
For each test, every transmitted packet is tracked to ensure
that it is received at each EMANE node. Note that data
is collected before entering EMANE and deciding that the
packet is received or dropped; that is, every packet should be
received at this point. The results can be seen in Figure 5(a).
Note that with a backplane of 1 Gbps, beyond 11 nodes,
the theoretical maximum, the number of missing packets
increases dramatically. The 10 Gbps backplane is able to
serve all of the packets without issue.

The next metric is the delay for each packet. Again, this
is measured for every transmitted packet, and represents the
time between the packet leaving the transmitter EMANE, and
when it first arrives at all receiver EMANE models. The
results in Figure 5(b) show similar results to the missing
packet metric. Below the theoretical maximum for 1 Gbps
ethernet, the delay is very small, but above that number, the
backplane is overloaded and the delay skyrockets. Again, the
10 Gbps testbed is well below the theoretical maximum and
performs well.

Computation—Along with the infrastructure challenges, there
is a significant computational challenge. That is, each node
must calculate the interference for every packet. With more
nodes in this all to all traffic scenario, there are more packets,
and thus more interference calculations to perform on each
packet. To gain some insight, consider a system with n

nodes, where n is an even number for simplicity, and note
that the maximum number of packets transmitted at a given
time occurs when half of those nodes are transmitting, and
half are receiving. This results in n

2 · n

2 total transmissions.
Thus a receiver calculating the interference of a single packet
would see n

2 · n

2 � 1 interfering packets. So in total, there are
n

2

· n
2

⇣
n

2

· n
2

� 1

⌘
(3)

packets to compute interference on at each node. This
quantity scales as n

4. One of our improvements to the
interference calculation is to compute interference only on
packets destined for the node, which decreases the number
of packets to compute interference for, from n

2 · n

2 to only n

2
packets, resulting in a scaling behavior of n3. While better,
this is still a significant amount of computation.

In order to understand the computation challenge, it is impor-
tant to understand the EMANE process execution model. At
start up, EMANE creates several threads. A few of these are
for relatively lightweight tasks, such as logging or processing
location events. But most importantly, the MAC layer and
the PHY layer are launched as separate threads. So both of
these layers can be run simultaneously on different cores, but
within a layer, there is only a single thread. Consequently,
although there may be multiple simultaneous packets being
received, they are processed serially. We will see that this
drastically limits the number of nodes that can be run, even
assuming that a single thread could run on a core without any
context switching. This assumption does not hold in the quad
core case, as the MAC and PHY layers for each node will be
switched periodically with the other EMANE threads.

In order to gain insight into the computational challenges, we
used the Systemtap software. This software compiles a kernel
module that profiles applications as they are run. This has the
advantage of not requiring any changes to the EMANE code
and allows it to run in real-time, which is vital for accurate
results. After running, the duration of the functions called
can be computed and the overall computational load can be
analyzed. The following plots demonstrate the time taken by
each thread as a fraction of the total time. That is, during
the interval of time monitored, this thread used a certain
percentage of the time. This is the “Actual” labels for the
graphs. Also plotted is the extrapolated percentage of time
for this thread. This is calculated by multiplying the duration
of each function called in the packet chain by the expected
number of packets received in an interval. A value greater
than 100% represents that the thread does not have enough
compute ability to process all of the packets it is receiving.
There are two test beds for these tests: servers with quad
core processors, and servers with 28-core processors. The
results for the MAC layer thread are seen in Figure 6(a),
and the PHY layer thread is shown in Figure 6(b). These
highlight that even the theoretical maximum number of nodes
(achieved if each thread is run uninterrupted on a core) is
limited by the PHY layer thread. Examining Figure 6(b)
shows that this limit is eight for the quad core servers, and
ten for the 28-core servers. Another interesting note is the
relative similarity between the two testbeds. Though the 28-
core servers perform better, the performance is limited by
the fact that the layers run in a single thread. Despite being
able to run 28 threads simultaneously, the performance is not
markedly better than that of the quad core machines.

Characterization Results— The overall performance of the
system using all to all traffic with backlogged queues can be
visualized by looking at the sum network throughput. By
summing the throughput of each link, the performance of
EMANE can be compared against the relative ground truth
of the simulator results. Results with a 2 Mbps effective
link rate can be seen in Figure 7(a). For both testbeds,
the EMANE results overlay the simulation results closely,
but begin to diverge as the number of nodes reaches the
maximum possible. For the quad core servers, the theoretical
maximum of the infrastructure is reached at 11 nodes, and
the overall network throughput drops because most of the
packets are dropped between servers. Similar behavior is seen
in for the 14-core testbed, but rather than the infrastructure
issues limiting the network throughput at 11 nodes, it is the
computation issues in the PHY and MAC threads.

It is important to point out that these limits are highly
dependent on the length of the time slot and the size of
packets. If the overall number of packets transmitted is
decreased by a factor of 10, then the EMANE model is still
a good representation of the system. See Figure 7(b) for an
illustration of system performance at 200 kbps. Notice that
the limit for the infrastructure and computation challenges is
well beyond the number of nodes plotted.

5. RESULTS
To demonstrate the overall system, sum network throughput
results were generated. These give insights into the overall
system performance as a function of the number of neighbors.
The node laydowns vary slightly between the all to one case
and the all to all case. In the all to one case, a single node
is placed in the center of a circle, and n nodes are distributed
uniformly at random around this central node. Each of these

6

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 22 24

B
ac

kp
la

n
e

Tr
af

fi
c

(G
b

p
s)

Number of Nodes
(a) Backplane traffic for unicast

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20 22 24

B
ac

kp
la

n
e

Tr
af

fi
c

(G
b

p
s)

Number of Nodes

Unicast

Multicast

(b) Backplane traffic for multicast compared to unicast

Figure 4. Backplane traffic

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
is

si
n

g
Pa

ck
et

s
(%

)

Number of Nodes

10G 2Mbps

1G 2Mbps

(a) Percentage of missing packets

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pa
ck

et
 D

el
ay

 (
m

s)

Number of Nodes

10G 2Mbps

1G 2Mbps

(b) Packet delay

Figure 5. Infrastructure performance metrics

0

40

80

120

160

200

2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
(%

)

Number of Nodes

28-Core Actual

Quad Core Actual

28-Core Extrapolated

Quad Core Extrapolated

(a) MAC layer computation

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10 11 12 13 14

Ti
m

e
(%

)

Number of Nodes

28-Core Actual

Quad Core Actual

28 Core Extrapolated

Quad Core Extrapolated

(b) PHY layer computation

Figure 6. Computation performance metrics

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
m

 N
et

w
o

rk
 T

h
ro

u
gh

p
u

t
(M

b
p

s)

Number of Nodes

Simulator

EMANE 10G 2Mbps

EMANE 1G 2Mbps

(a) Network throughput at 2 Mbps

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
m

 N
et

w
o

rk
 T

h
ro

u
gh

p
u

t
(M

b
p

s)

Number of Nodes

Simulator

EMANE 10G 200kbps

EMANE 1G 200kbps

(b) Network throughput at 200 kbps

Figure 7. All to all results

7

0

20

40

60

80

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Su
m

 N
et

w
o

rk
 T

h
ro

u
gh

p
u

t
(M

b
p

s)

Number of Nodes

Theoretical

Simulator

EMANE

Figure 8. All to one results

nodes then transmits a backlogged flow to the center node. In
the all to all case, nodes are distributed uniformly at random
in a square area, and every node transmits a backlogged flow
to every other node.

All to One
For the all to one case, there are theoretical results, EMANE
results, and discrete event simulator results. The theoretical
results are generated from Equation 23 (utilizing the forms
from Equations 24 and 25) in [9]. In Figure 8, these results
are shown for the number of neighbors spanning 1 to 30. All
three models of the system coincide, showing that both the
discrete event simulator and EMANE model are valid.

All to All
For all to all traffic, there are no theoretical results to compare
against, but the simulation results represent the ground truth,
as they aligned with the theoretical results for the all to
one case, and the simulator does not have the infrastructure
or computation issues that EMANE does. Figure 7(a) and
Figure 7(b) show the network sum throughput.

6. CONCLUSION
In this paper, we describe our new MAC layer protocol that
exploits the new underlying physical layer abilities of a digital
phased array, specifically the ability to form receive beams a
posteriori and to form multiple transmit or receive beams. We
designed new location tracking and power control methods to
ensure that the transmit beam is correctly pointed with the
correct power. Also, we proposed a scheme to track the state
of a neighbor’s random access protocol in order to drastically
reduce the number of dropped packets and interference in
the system. These ideas were tested in a C++ simulator as
well as an EMANE model, and the scaling limitations of the
EMANE model were discussed and quantified. Additionally,
it was shown that the theoretical results coincided with both
the EMANE model and simulator results, which confirms the
validity of the results. Knowning this, numerical characteri-
zations of scenarios without theoretical results were presented
to further characterize the system capability.

There are plenty of avenues for future research as well.
Neighbor discovery in a full 4⇡ steradian search space re-
mains an open problem, and a more sophisticated location
tracking algorithm could be developed that accounts for gen-
eral platform movement abilities as well as predicted flight
plans. Another path for research is contention resolution in
dense networks, where neighbors are less than a beam width
apart, as selecting the best set of links in a distributed manner
is a difficult task.

REFERENCES
[1] S. Yi, Y. Pei, and S. Kalyanaraman, “On the capacity

improvement of ad hoc wireless networks using direc-
tional antennas,” in Proceedings of the 4th ACM Inter-
national Symposium on Mobile Ad Hoc Networking &
Computing, ser. MobiHoc ’03. New York, NY, USA:
ACM, 2003, pp. 108–116.

[2] J. Litva and T. K. Lo, Digital Beamforming in Wireless
Communications, 1st ed. Norwood, MA, USA: Artech
House, Inc., 1996.

[3] M. Ascione, G. Bernardi, A. Buonanno, M. D’Urso,
M. Felaco, M. G. Labate, G. Prisco, and P. Vinetti,
“Simultaneous beams in large phased radar arrays,” in
Phased Array Systems Technology, 2013 IEEE Interna-
tional Symposium on, Oct 2013, pp. 616–616.

[4] H.-N. Dai, K.-W. Ng, M. Li, and M.-Y. Wu, “An
overview of using directional antennas in wireless
networks,” International Journal of Communication
Systems, vol. 26, no. 4, pp. 413–448, 2013. [Online].
Available: http://dx.doi.org/10.1002/dac.1348

[5] R. R. Choudhury, X. Yang, R. Ramanathan, and N. H.
Vaidya, “Using directional antennas for medium access
control in ad hoc networks,” in Proceedings of the 8th
Annual International Conference on Mobile Computing
and Networking, ser. MobiCom ’02. New York, NY,
USA: ACM, 2002, pp. 59–70. [Online]. Available:
http://doi.acm.org/10.1145/570645.570653

[6] T. Korakis, G. Jakllari, and L. Tassiulas, “A mac proto-
col for full exploitation of directional antennas in ad-hoc
wireless networks,” in Proceedings of the 4th ACM In-
ternational Symposium on Mobile Ad Hoc Networking
& Computing, ser. MobiHoc ’03. New York, NY, USA:
ACM, 2003, pp. 98–107.

[7] D. Bertsekas and R. Gallager, Data Networks (2Nd
Ed.). Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1992.

[8] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L.
Marzetta, “Massive mimo for next generation wireless
systems,” IEEE Communications Magazine, vol. 52,
no. 2, pp. 186–195, February 2014.

[9] G. Kuperman, R. Margolies, N. M. Jones, B. Proulx,
and A. Narula-Tam, “Uncoordinated mac for adaptive
multi-beam directional networks: Analysis and evalua-
tion,” in 2016 25th International Conference on Com-
puter Communication and Networks (ICCCN), Aug
2016, pp. 1–10.

[10] (2016) Extendable mobile ad-hoc net-
work emulator (emane). [Online]. Available:
http://www.nrl.navy.mil/itd/ncs/products/emane

[11] J. Ahrenholz, “Comparison of core network emulation
platforms,” in MILITARY COMMUNICATIONS CON-
FERENCE, 2010 - MILCOM 2010, Oct 2010, pp. 166–
171.

[12] M. E. Steenstrup, “Neighbor Discovery among Mo-
bile Nodes Equipped with Smart Antennas,” in Scan-
dinavian Workshop on Wireless Ad-hoc Networks, May
2003.

8

